Information Brief
Addressing Trends and Developments in Secondary Education and Transition
April 2004 • Vol. 3, Issue 3
Untitled Document
Motivating Youth with Disabilities to Learn in the Science Classroom: A Guide
for Educators
By Peg Lamb, Bill Hodges, Mary Brown, and Dave Foy
Introduction
Historically, students with disabilities have experienced difficulties in
fully accessing and participating in middle school and high school science programs
and courses. Moreover, teachers have held lower expectations for students with
disabilities than for students without disabilities in science programs (Cunningham
& Noble, 1998). This situation continues to disenfranchise students with
disabilities because they exit high school unprepared for college courses that
can lead to a career in the sciences (Vogel, 1993). In addition, few students
with disabilities exit high school inspired to attend college and pursue careers
within the sciences.
This brief focuses on strategies for motivating students with diverse learning
styles—including students with disabilities—in science courses and
programs. Information in this brief is drawn from the Bridges Project supported
by a grant from the National Science Foundation Program for Persons with Disabilities.
As part of the project, a team of science teachers from Holt High School in
Michigan, in partnership with faculty at Lansing Community College, researched
differences in expectations and the types of supports available for students
with disabilities within the two institutions.
Alternatives and Solutions
Students with disabilities vary widely in their learning styles and abilities.
Teachers must be able to present materials in ways accessible to all students
and then hold all students responsible for the same level of mastery. Quality
education integrates many techniques to engage, educate, and assess students
without lowering standards (Wilson, Shulman, & Richert, 1987).
Presenting information in several ways prevents boredom, gives students confidence
and success, and strengthens individual areas of weakness for students with
and without disabilities. In a science classroom, many opportunities exist to
diversify instruction.
Case Studies
The use of case studies can be effective in motivating all students. A case
study is a multidimensional problem presented for the class to analyze. In order
to solve the problem, students must gather information, learn investigation
and analysis tools and techniques, and apply them to the case. Learning through
case studies provides students with a reason for performing laboratory activities
and participating in class discussions (Caseau & Norman, 1997).
For example, a unit on water could focus on a fish kill in a river. Students
would brainstorm about what could have killed the fish, how toxic substances
could have entered the river, and how the river could be tested for pollutants.
This would motivate students to learn about the water cycle (how water moves
from one area to another) and water pollution. The case-study format encourages
students to ask for information as well as use skills and techniques needed
to find evidence. Such an activity empowers students to lead the investigation
and develop ownership in the process by directing their own learning.
Students request information to help solve the problem and then retain that
knowledge. Students who ask questions listen for answers. Such case studies
conceal the science content inside the story line. This gives students who do
not have a preexisting interest in science the motivation to persist.
Hands-On, Lab-Based Education
In science, students can learn much through experimentation. The process starts
with asking questions that lead to experiments, actively conducting experiments,
analyzing the results, and drawing conclusions. Furthermore, students need to
work in collaborative groups and consult one another to verify and assess interpretation
of results. Through hands-on activities and social interactions in a lab group,
students are exposed to multiple ways of discovering and learning. If the laboratory
activity is well designed and includes questions that guide students to analyze
their results, students learn a great deal.
For example, the concept of the law of conservation of mass could be taught
in many ways. Students could read about it in a textbook and have the information
interpreted in a lecture. In a more interactive approach, students would conduct
an experiment to verify the law. The problem with this method is that students
who paid attention to the lecture should know what will happen in the experiment.
Instead, prior to instruction, the teacher might give each lab group an Alka-Seltzer®
tablet, an empty soda bottle, and some water. The students could be instructed
to find the mass of all three items, then to find the mass again after the tablet
was placed in the sealed bottle. If they performed the experiment correctly,
they would discover that the mass did not change. This approach allows the students
to teach themselves the law. Since the outcome has yet to be discovered, students
will be more focused.
Using laboratory investigations aids the motivation and retention of material
for students with disabilities. However, this alone is insufficient. Students
with disabilities often lack confidence or the conceptual understanding to acknowledge
or recognize when they do not understand a lesson. Therefore, teachers must
rely on many techniques to present information and multiple methods to communicate,
especially when students fail to ask questions. The following are some strategies
for engaging all students, including those with disabilities.
Analogies
Knowledge of popular culture is useful in making personal connections with
students and is often a key to unlocking their understanding of scientific concepts
(Hesse, 1966; Thiele & Treagust, 1995). The concept of protein channels
and active transport in cell membranes is difficult for many students to comprehend.
Laboratory experiments do not reveal the microscopic process, and images and
animations do little to help students grasp the concept. An analogous macroscopic
(large-scale) process can help students visualize a microscopic (small-scale)
process. Most students are familiar with the cartoon Scooby Doo™ and are
aware that in almost every episode, a character grabs an object, such as a book
or candlestick, and an entire section of wall flips to reveal a hidden room.
This “flipping” action is very similar to the action of active transport
proteins within the cell membrane. A comparison of protein channels to “flippy”
doors often seen in the Scooby Doo™ cartoon, helps students visualize
the process by using a frame of reference from popular culture.
Cartoons, movies, music, television, amusement parks, and local events provide
common knowledge that can be used by teachers to promote student understanding
of difficult information. Furthermore, knowing a student personally allows the
teacher to choose analogies that are specific to the individual. For example,
a student was having difficulty understanding that the eye was a passive receiver
of light. She was convinced that “seeing” involved the eye reaching
out to objects (a common misconception). Since the student played softball,
comparing the eye to a catcher’s mitt and explaining that the mitt receives
the ball like the eye receives light provided an analogy for the student as
to how the eye works (Hesse, 1966; Thiele & Treagust, 1995).
Storytelling
Students often need a context in which to place an idea. Connections made
between existing schemas in the brain facilitate new learning. The mention of
a place or a person often brings to mind memories and stories associated with
it. If connections in the brain are made with a story, students will learn more
readily. Storytelling may focus on a student’s or a teacher’s experiences.
For instance, the teacher can relate a personal experience with a surgical procedure,
such as a radial keratometry operation to correct near-sightedness. The story
of watching the knife descending on the eye and feeling the pressure of the
knife on the eyeball engages students and compels them to understand how the
lens and cornea help create an image on the retina. Such a story can lead to
an experiment with lenses and allows students to see practical uses for the
information. Such stories engage students and connect the newly taught information
with interesting and meaningful narratives (Wilson, 2002).
Role-Playing
Having students act out roles is engaging to both the actors and the audience.
Allowing students the freedom to take on roles can generate interest in a topic.
For example, students can be assigned the role of “expert” and be
expected to convince classmates that their view is right. This role-play can
take the form of a debate, a lawsuit, a presentation, or a committee meeting.
Such role-playing promotes deeper understanding than simple memorization, and
the dramatizations can lead to greater understanding for the entire class.
In attempting a more meaningful final exam, a scenario can be created whereby
the entire class becomes a committee convincing a third world nation that money
should be spent trying to prevent diseases. Each student can be assigned to
play the role of an expert in a specific area. The students must organize information
they have learned and present it to the committee.
With creativity encouraged within the grading rubric, students may see many
different types of presentations with information conveyed in forms very unlike
the original instruction. This allows many students to grasp the material in
new ways. In addition, the teacher gains a much better perspective on the level
of understanding students have attained.
Models and Modeling
Science teachers try to explain phenomena that cannot be seen. Electrons, X-rays,
the processes of cell membranes, and the interior of the earth have all been
investigated without direct viewing. Through many ingenious inventions and thought
processes, scientists have described these objects and events (Nersessian, 1999).
One challenge of science teaching is to make sense of such elusive phenomena.
Models are advantageous as they can give students a visual representation of
occurrences at both the macroscopic and microscopic levels.
Physical models can be derived from several sources. They can be commercially
purchased, teacher-developed, or better yet, student-created. Models that show
processes are better than inactive ones. For example, Crystal Scientific sells
a ground water simulator with which dyes can be injected into water wells. As
the dye moves through the ground water, the students see the flow of a contaminant
in an aquifer, a process which in nature is not easily observable. Chemistry
teachers create molecular models simply by using toothpicks and styrofoam balls
to visually illustrate molecular configurations. Students can model cell processes
by constructing a giant cell with construction-grade plastic and inflating it
with a window fan. They can even role-play the movement of molecules in and
out of the cell.
In addition, the teacher can model scientific thinking and behavior. Teachers
have many opportunities for modeling writing, developing hypotheses, experimenting,
analyzing, problem solving, synthesizing, and drawing logical conclusions. Performing
an experiment will generate student questions; when a student asks an unanticipated
question, a teacher can model how to find the answer. Student questions serve
as opportunities to develop hypotheses, discuss resources for solutions, and
perhaps carry out an actual experiment to draw conclusions. In sum, both models
and modeling are effective strategies for the classroom, particularly for students
with disabilities.
Science for All
All students are capable of learning science, and expectations for all students
should be the same. This belief intensifies the challenges of science teaching.
Hands-on learning with theme-based instruction will reach a majority of students.
However, a science teacher must also approach concepts in multiple ways, through
analogy, storytelling, role-playing, models, and modeling. These additional
strategies will allow students with different learning styles, abilities, and
strengths to be successful. By providing multiple ways of learning, teachers
facilitate the success of all students.
Resources
Inclusion in Science Education
for Students with Disabilities
http://www.as.wvu.edu/~scidis/
References
Caseau, D., & Norman, K. (1997). Special education teachers use science-technology-society
(STS) themes to teach science to students with learning disabilities. Journal
of Science Teacher Education, 8(1), 55-68.
Cunningham, C., & Noble, S. (1998, March). EASI
street to science and math for K-12 students. Paper presented at CSUN
Center on Disabilities 1998 conference, Los Angeles. Retrieved March 19, 2004,
from http://www.dinf.ne.jp/doc/english/Us_Eu/conf/csun_98/csun98_108.htm
Hesse, M. (1966). Models and analogies in science. Notre Dame, IN:
Notre Dame Press.
Nersessian, N. (1999). Model-based reasoning in conceptual change. In L. Marnani,
N. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific
discovery. London: Kluver Academic Press.
Theile, R., & Treagust, D. (1995). Analogies in chemistry textbooks. International
Journal of Science Education, 17(6), 783–795.
Vogel, S. (1993). A retrospective and prospective view of postsecondary education
for adults with learning disabilities. In S. Vogel & P. Adelman (Eds.),
Success for college students with learning disabilities (pp. 3–20).
New York: Springer-Verlag.
Wilson, E. (2002, Spring). The power of story, American Educator,
9–11.
Wilson, S., Shulman, L., & Richert, A. (1987). 150 different ways of knowing:
Representations of knowledge in teaching. In J. Calderhead (Ed.), Exploring
teachers’ thinking (pp. 104–123). London: Cassell.
Authors Peg Lamb and Mary Brown are with LCC, and Bill Hodges and Dave
Foy are with HHS. For further information contact Peg Lamb, Bridges Project
Director, at drpeglamb@yahoo.com.
The development of this publication was supported in part by National Science
Foundation HRD grant #HRD9906043.
^ Top of Page ^
There are no copyright restrictions on this document. However, please cite and credit the source when copying all or part of this material.
This report was supported in whole or in part by the U.S. Department of Education, Office of Special Education Programs, (Cooperative Agreement No. H326J000005). The opinions expressed herein do not necessarily reflect the policy or position of the U.S. Department of Education, Office of Special Education Programs, and no official endorsement by the Department should be inferred.
This publication is available in an alternate format upon request. To request an alternate format or additional copies, contact NCSET at 612.624.2097.
|